
N42 - Electrochemistry

Concepts

N42 - Electrochemistry

Concepts

Target: I can assign oxidation numbers and balance redox reactions.

 $Zn(s) | ZnSO_4(aq) || CuSO_4(aq) | Cu(s)$

The study of the interchange of chemical and electrical energy.

Concerned with:

- the generation of an electrical current from a <u>spontaneous</u> chemical reaction
- the use of an electrical current to produce a <u>non-spontaneous</u> chemical change

Mnemonics

LEO goes GER Loss of Electrons is Oxidation Gain of Electrons is Reduction

OIL RIG Oxidation is Loss of Electrons Reduction is Gain of Electrons

Examples

Oxidation Ag \rightarrow Ag⁺ + e⁻ Cu \rightarrow Cu²⁺ + 2e⁻

Reduction $Ag^+ + e^- \rightarrow Ag$ $Cu^{2+} + 2e^- \rightarrow Cu$ The charge an atom in a compound would have **IF** the compound was composed of ions.

Helps track how the electrons are moving around during a reaction.

Sometimes easy to determine, sometimes complex.

 $KF \rightarrow K^+ + F^-$ K ox # = +1, F ox # = -1

Rules for Assigning Oxidation Numbers

- 1. Any uncombined element is 0.
- 2. Monatomic ion equals the charge on the ion.
- 3. The more-electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
- 4. Fluorine in a compound is always -1
- 5. Oxygen is -2 unless it is combined with F, when it is +2, or it is in a peroxide, such as H_2O_2 , when it is -1

- 6. Hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1
- In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers +1, +2 and +3 respectively.
- 8. The sum of the oxidation numbers of all atoms in a neutral compound is 0.
- 9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals charge of the ion.

Balancing Redox Equations

More complicated than balancing normal reactions. You have to balance the electrons, not just the atoms! Steps

- 1. Assign oxidation numbers to determine which things are oxidized and which are reduced.
- 2. Split the rxn into two halves oxidation half and reduction half. Include electrons.
- 3. Balance the atoms.
- 4. Balance the charge by balancing the number of electrons.
- 5. Add half reactions back together, simplify, and CHECK.

Determine the element oxidized

Assign oxidation states

and the element reduced.

Yes, I know this isn't balanced! That is what we are working on!

oxygen -2, not in one of the exceptions.

$Cl_2 + l^- \rightarrow 2Cl^- + lO_3^-$ 0 -1 -1 +5 -2elements monoatomic monoatomic x + 30

x + 3(-2) = -1sum must equal the overall charge on ion x = +5

lements monoatomic are 0 ions match their charge

monoatomic ions match their charge

Assign oxidation states

Determine the element oxidized and the element reduced.

LEO goes GER I' lost electrons = oxidized, $-1 \rightarrow +5$ Cl gained electrons = reduced, $0 \rightarrow -1$

Write oxidation and reduction half-reactions, including electrons

Oxidation electrons being lost, products Reduction electrons being gained, reactants

I went from -1 \rightarrow +5, that's a loss of...

Yes, I know these are not balanced! That is what we are still working on! It takes a while!

Oxidation: $I^- \rightarrow IO_3^- + \underline{6e^-}$ Reduction: $CI_2 + \underline{2e^-} \rightarrow 2CI^-$

Each CI went from $0 \rightarrow -1$, that's a gain of...

Balance the atoms in the half reactions

- First balance elements other than H and O.
- Add H₂O where O is needed.
- Add H⁺ where H is needed

Oxidation: $I^- + \underline{3H_2O} \rightarrow IO_3^- + 6e^- + \underline{6H^+}$

Reduction: $Cl_2 + 2e^- \rightarrow 2Cl^-$

4

Balance the charge by balancing the # of e⁻

Balance electrons between half-reactions.
Least Common Multiple

Oxidation: 1 x ($I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+$) Reduction: 3 x ($CI_2 + 2 e^- \rightarrow 2 CI^-$)

Oxidation: $I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+$ Reduction: $3CI_2 + 6 e^- \rightarrow 6 CI^-$

Add half reactions together, simplify, check

Make sure the atoms balance AND the charges

Oxidation: $I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+$ Reduction: $3CI_2 + 6 e^- \rightarrow 6 CI^-$ 5

 $I^{-} + 3H_2O + 3CI_2 + 6e^{-} \rightarrow IO_3^{-} + 6e^{-} + 6H^{+} + 6CI^{-}$

 $\text{I}^- + 3\text{H}_2\text{O} + 3\text{CI}_2 \rightarrow \text{IO}_3^- + 6\text{H}^+ + 6\text{ CI}^-$

CHECK: Atoms balanced – yes! Charges balanced – yes!

Best Advice...

USE PENCIL!

DON'T CRAM YOUR WORK! USE LOTS OF SPACE!

DON'T PANIC!

STUCK??? ERASE AND START OVER.

Oxidation and Reduction Recap

Oxidation is the process that occurs when

- the oxidation number of an element increases,
- an element loses electrons,
- a compound adds oxygen,
- a compound loses hydrogen, or
- a half-reaction has electrons as products.

Reduction is the process that occurs when

- the oxidation number of an element decreases,
- an element gains electrons,
- a compound loses oxygen,
- a compound gains hydrogen, or
- a half-reaction has electrons as reactants.

Oxidizing agent

The substance that is **DOING the oxidizing** of the other substance. The substance that is **BEING REDUCED**!

Reducing agent

The substance that is **DOING the reducing** of the other substance. The substance that is **BEING OXIDIZED!**

Anode

The electrode where oxidation occurs

Cathode

The electrode where reduction occurs

Reduction at the Cathode

Current - the number of electrons that flow through the system per second.

• Unit = ampere, amp, A

$$1A = \frac{1 Coulomb}{1 second} = \frac{6.242 x 10^{18} e^{-1}}{1 second}$$

Electrode surface area dictates the # of e- that can flow.

• Larger batteries produce larger currents.

Cell Potential, potential difference, electromotive force All terms for the difference in potential energy between the reactants and products

- The voltage needed to drive electrons through the external circuit
- Amount of force pushing the electrons through the wire
- Unit = volts
- 1 V = 1 J of energy per coulomb of charge

Useful Conversions $1A = \frac{1 \ Coulomb}{1 \ second} = \frac{6.242 \ x \ 10^{18} e^{-1}}{1 \ second}$ $1Volt = \frac{1 \ Joule}{1 \ Coulomb}$ $1 \ Faraday = \frac{96, 500 \ Coulombs}{1 \ mol \ e^{-1}}$

Example: How many minutes does a **4.00** A current need to be applied to a Cu²⁺ solution to make 15.00 g of Cu?

15.00g	1 mol	2 mol e-	96,500 C	1 s	1 min	= 189.8 min
	63.55 g	1 mol Cu	1 mol e-	4 C	60 s	- 103.0 mm

YouTube Link to Presentation

https://youtu.be/-y2xTX_BVsA